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ABSTRACT

In computational learning theory, probably approximately correct (PAC) learning purposes a framework
that can provide generalization error bound with high probability. But in practice, PAC bound suffers from
being vacuous and remains as a theoretical subject. PAC-Bayes approach obtains a tighter generalization
error bound under the PAC framework by adding a Bayesian viewpoint and assuming a data-dependent
prior distribution over the concept class. In this literature review, we will introduce theoretical PAC-Bayes
bounds assuming previous knowledge of PAC learning. Then we will examine some recent works that
apply PAC-Bayes bounds to neural network and achieve tight generalization error bound. We also discuss
other applications of PAC-Bayes framework in adversarial learning, meta learning, etc. Lastly, we provide
our own code experiments and our observations.
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PART I: INTRODUCING THE PAC-BAYES BOUNDS AND EMPIRICAL APPLI-
CATIONS

1.1 Introduction

In order to introduce the PAC-Bayesian analysis, it is necessary to start off with PAC analysis and
Bayesian analysis. Both PAC and Bayesian learning take data as input and output a concept from a
hypothesis class. However, they differ in the setting of data. While the input distribution for PAC learning
is unknown, Bayesian analysis requires input and test data to be generated from a prior distribution.
PAC learning could be applied to a wide range of input data, regardless of the input distribution, but
this generalization comes at a price of performance. On the other hand, while Bayesian analysis tend to
outperform PAC analysis, when the data is distributed according to the specific prior, the output hypothesis
fails to be applicable to other distributions. This is summarized as the “performance/generality trade off”
by McAllester, one of the first researchers to prove PAC-Bayes bounds and theorems. [23]

PAC-Bayesian analysis combines the advantages of both PAC analysis and Bayesian analysis, and as
a result oversteps the limits of both methods. PAC-Bayesian algorithms can be applied regardless of the
input distribution, and they achieve good performance by utilizing the distributions of training and test
data when such distributions are unknown.

The idea of PAC-Bayes bounds was first proposed by John Shawe-Taylor and Robert C. Williamson
in their paper “A PAC Analysis of a Bayesian Estimator” in 1997. Taylor and Williamson combined the
method of PAC analysis, which gives a priori estimates, and Bayesian analysis, which gives a posteriori
estimates. [29] They provided generalization to the Bayesian analysis framework by placing a ball in
a finite volume parameter space with uniform prior distribution, and the region of the ball represents
correct classification. A larger region corresponds to a better bound on generalization. The authors also
defined “luckiness” and “unluckiness” to parallel the prior encoding in Bayesian analysis and made the
connection to PAC analysis by defining the concept “probably smooth”. To lower generalization error, the
authors lowered the unluckiness of the target function, which could be measured through the volume of
the ball. The bound they ultimately derived was independent of the complexity of the hypothesis class,
but dependent on the dimension of the parameter space. [29]

Then, David A. McAllester proved the first PAC-Bayes bounds in 1998 and 1999. While the concept
space for the bound by Taylor and Williamson needs to be parameterized, McAllester developed bounds
applicable to any concept space. Only a set of concepts is needed. Bounds by McAllester are also



tighter than the previous bound. In his paper “Some PAC-Bayesian Theorems”, McAllester developed
two preliminary theorems and two main theorems, where the preliminary theorems are applicable to a
countable concept class, and the main theorems are generalized versions of preliminary theorems and
concern all measurable subsets U of the concept space. The difference between the generalization error
and the empirical error is bounded within an expression of a function P(U) and the number of instances m.
[23] McAllester developed a new theorem with a focus on model averaging in his paper “PAC-Bayesian
Model Averaging”. This new bound is capable of selecting a weighted subset of concepts instead of a
uniformly weighted one. [24]

After that, more bounds are proven to reduce the difference between the empirical error and the
generalization error. Some important bounds were given by Seeger and Langford, Maurer and Catoni. [28]
[19] [22] [4] In the next section, we will introduce the key concepts and theorems of the PAC-Bayesian
analysis, mainly following the notations and methods of Tim van Erven. [35]

1.2 Definition and Mathematics of PAC-Bayes Bounds

Notation: suppose the data D = ((X;,Y1),(X2,Y2), ..., (X,,Y,)) is independent, identically distributed.
For the i-th example and a hypothesis h € S, the loss function is defined as [(X;,Y;, k), which, for
example, could be (¥; — h(X;))? for the quadratic loss function. The empirical error measured from data
D for hypothesis /1 is R,(D,h) = ¥ | 1(X;,Y;,h). The generalization error is R(h) = E[I(X,Y,h)]. We
would like to show that the generalization error R(h) is close to the empirical error R,(D,h). van Erven
also defined a term My (h) = —%ln]E[e’”l (X.Y:1)] (where n > 0) to substitute R(h). The scheme is to first
bound the difference between R, (D, h) and My (h), and then relate My (h) to R(h). [35]

We will first introduce inequalities used in the proof for the bound: the Cramer-Chernoff Method,

Hoeffding’s inequality, and Markov’s inequality.

The Cramer-Chernoff Method [36]
For a random variable X, for r > 0, the tail probability P(X > x) is bounded by

P(X > x) = P(exp(rX) > exp(rx)) < exp(—rx)Eexp(rX)

Because this holds for all r > 0, P(X > x) < infexp(—rx)Eexp(rX).
r>0
Hoeffding’s Inequality [8]
For independent, bounded random variables Z1, ..., Z,, if all Z; satisfies a < Z; < b, where —oo < a <
b < oo, then for all r > 0,

2
P} o(Zi—E[Z]) 2 1) < exp(— 255)

P(L X1 (Zi— E[2]) < —1) < exp(~ 220

From Hoeffding’s Inequality, the following lemma can be proved. We will move on with a focus on
deriving the PAC-Bayes bounds, but a detailed proof could be found in Appendix A.1.1 of Cesa-Bianchi
and Lugosi’s Prediction, Learning, and Games. [6]

Lemma 0

For a random variable X such that a < X < b, for any real number s,

X s*(b—a)?
[nEe’t < sEX + —5
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Markov’s Inequality
For a nonnegative random variable X and any positive real number a,

P(X > a) < 2X

Lemma 1
For any 8 € (0, 1], with probability at least 1 — 8, suppose /(X,Y,h) € [a,b],

n(1/8)(b—a)?
R(h) < Ro(D,h) +/ ML) (b=

Proof: By the Cramer-Chernoff Method and Markov’s Inequality,

P(e*ﬂ"Rn(Dﬁ) >Epy [efnan(D/,h)]/a) < Eple ~MnRn (D' )] _s

= Epyle —nnRp (D' h) ]/5
So with probability at least 1 — 0,
efnnR,l(D,h) <Ep [e*rlﬂRn(D',h)]/a

]E[e—nl(XﬁY‘h)]n

Because the instances are independent and identically distributed, RHS is . Because the

exponential function is increasing, we know that — %ln(LH S)>— %ln(RH S)

— ¢ In(RHS) = — 2InE[e~ "X Y] — Ling = nMy (h) — Ling
—5;[n(LHS) = nR, (D, h)
nMy (h) — %ln% <nR,(D,h)
My (h) < Ry(D,h)+ sIn

By Lemma 0, since /(X ,Y,h) € [a,b], —1(X,Y,h) € [-b,—a],

lnE[efnl(X,Y,h)} < 777E[ (X Y h)] le(bgfa)z
—InE[e M XY) > El1(X,Y,h)] -
R(h) < My (h) + 122

Therefore, with probability at least 1 — §,

—a)? _ )2
R(h) < My () + 129 < R, (D,h) + 1L in + 1Eee-

We could pick 17 > 0 for the tightest bound. To minimize RHS, pick n = %I% ?2) , then we get the

following result:
. . In(1/8)(b—a)?*
With probability at least 1 — &, R(h) < R,(D, h) 41/ —+=,—

Lemma 2

Suppose the hypothesis class . is countable. We pick a hypothesis /1 from .7 based on current data.
Let the “prior distribution” P be any function on & € 7 such that P(h) > 0 for all i, and ¥, ,» P(h) = 1.
Note that this prior distribution could be any function that satisfies the two conditions, instead of a
distribution that reflects actual probabilities. Then, for any d € (0, 1], for any 17 > 0, with probability at
least 1 — 6,

My () < Ry(D,h) + #lnp(}l)g

Proof: We have already shown in the proof for Lemma 1 that M, (h) < R,(D,h)+ #ln% with probability
atleast 1 — § (1). Therefore, P(My (h) > R,(D,h) + %lnﬁl)a) is not more that the probability that some
hypothesis h € ¢ satisfies My, (h) > R,(D, h) + #ln%, which is the sum of this probability for all 4.
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=

B(My () > Ra(D,h) + hlnsb=s) < Yy o B(My () > Ra(D ) + lnrkss)

P(My (h) > R, (D, h) + #anIz)a) < P(h)é for each h by the application of (1). Then,

P(My (h) > Ry(D,h) + q:1n

In h) wis) < Lnew P(h)6 =6
P(My (h) < R(D,h) +

1 1
aaln m)>1 )

Although this is a rather satisfactory bound for a countable hypothesis class, the bounds we aim for
are applicable for any continuous hypothesis class. To counter this drawback, using KL Divergence, the
PAC-Bayes bounds could be derived.

KL Divergence
KL Divergence measures the difference between two probability distributions. If the probability
distributions p(x) and g(x) are discrete, their KL Divergence is defined as

KL(p(x)[4(x)) = . p(x)in2%)

For the continuous case,

KL(p(x)llq(x)) = |7 p() I d

In the PAC-Bayesian analysis, the prior distribution P on the hypothesis class ¢ is independent
of the data, while the posterior distribution Q is data-dependent. Instead of picking a hypothesis by
some decision rule, as in Lemma 2, in the PAC-Bayesian analysis, the output hypothesis is indeterminate
and drawn from the posterior distribution Q. The KL Divergence serves as a measure for the difference
between P and Q, and appears in the PAC-Bayes bound.

Lemma 3
For any 1 > 0, § € (0, 1], with probability at least 1 — 6,

Epo[My (h)] < Epo[Ra(D,h)] + o2 (KL(Q||pi) + Ing)

Proof: We have shown in the proof for Lemma 1 that Ep[e~1"Re(D:h)] = E[e~1/(XY)]n,

e~ nMn (h) — enln]E[e’”’(X*Y‘h)] ]E[ —nl(X,Y,h) ]n [ nnR,,(D,h)]
nnRu(D,h)
EppEp | =1

EppEple” n"Rn(Dh +nnMpy h)]
EpEjple —nnRy(D,h)+1nnMy h)] _
EDEh~Q[(e*n”Rn(D-,h)JrnnMn( ))
-1

EpE, Q[e—nnR,,(D,h)+nnMn (h)—

Because the exponential function is convex, by Jensen’s Inequality (also note that ]EhNan% =

KL(Q||P)),

EDEhNQ[efnan(D,thnMn( )— an(Z;] >ED[ nnEhNQ[Rn(D.,h)an(h)]fKL(QHP)}
I e~ MEn-0lRu(D)~Mn (W] -KL(Q|IP)] < |

By Markov’s Inequality,

P(~NnEhg[Ru(D,h) — My (h)] = KL(Q||P) > Ing) = (e MEiQlon (D) =M (R} =KLIQIF) > £ <
Eple —NnEpg[Rn(D;h)—Mp (h)]-K QHP]5§5

Sn|—
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So with probability at least 1 — 8,

—NnEhg[Ru(D,h) — My (h)] — KL(Q||P) < Ing
En~o[My (h)] < Eneo[Ra(D, )] + 7 (KL(Q||pi) + Ing)
Theorem 1

If the loss is bounded by /(X,Y,h) € [a,b], then for any & > 1, v > 0, for any 0 € (0, 1], for all
n € (0,v] with probability at least 1 — J,

—a)?
Eno[R(1)] < Eno[Ra(D, )]+ 0 5 + & (KL(Q||P) + Ink + In(4logan+C))

Where C = max{loga(vi};%) ),0} +e

This is an example of a PAC-Bayes bound given by van Erven. [35] To keep the focus of this
literature review, we will not attempt to give the full proof for this theorem, but the derivation of this
theorem is built on Lemma 3. The part n % is obtained in the same way as in the proof for Lemma 1
(by relating Ej,.o[R(h)] to Ejo[My (h)]). Bounding 7 within (0,v] is an attempt to use the union bound
to optimize 7 for the tightest bound.

Many more bounds are given by researchers and scholars, such as Catoni’s bound, and many more
bounds based on the Gibbs posterior that Alquier provides in his survey “User-friendly Introduction to

PAC-Bayes Bounds”. [4] [1] We will give a few examples of the bounds below.

Theorem 2(Catoni’s bound) [4]
For any 1 > 0, 6 € (0, 1], with probability at least 1 — 6,

KL(Q||P)+log %
n

Y
Ej-oR(h) < EpogRo(D,h) + 1 4

Theorem 3(Thieman, Igel, Wintenberger and Seldin’s bound) [33]
Suppose the data D has n instances, and r instances are selected independently from D to train
hypothesis 4. For any 1 € (0,2), for any 6 € (0, 1], with probability at least 1 — &,

EpoRa(Do) | KL(Q|IP)+In 22
1-7 n(1-3)(n—r)

EnoR(h) <

This is an example of a tight, non-vacuous PAC-Bayes bound. We will introduce non-vacuous
PAC-Bayes bounds in the section below.

The bounds introduced above are empirical PAC-Bayes bounds. There is another category for
PAC-Bayes bounds: the oracle PAC-Bayes bounds. While empirical PAC-Bayes bounds are based on
empirical PAC bounds (bounds that can be calculate numerically with data), oracle PAC-Bayes bounds
are based on oracle PAC bounds, bounds that cannot be computed numerically, but demonstrate the role
of sample size and the set of predictors. Alquier has shown that although it is commonly perceived that
empirical PAC-Bayes bounds are more applicable to practical problems while oracle PAC-Bayes bounds
tend to be theoretical, there is no clear line between them. Empirical PAC-Bayes bounds could help
develop theories on oracle PAC-Bayes bounds, and oracle PAC-Bayes bounds could help with the analysis
of empirical PAC-Bayes bounds in practice. [1]

There is also a distinction between generic priors and oracle priors. The theorems above use generic
priors, while oracle priors are able to optimize the expected value of the bound, thus optimizing the value
of the KL Divergence term on the right hand side. [17] [9]

1.3 Non-Vacuous PAC-Bayes Bounds

According to Alquier, vacuous PAC-Bayes bounds are PAC-Bayes bounds that provide no additional
information, i.e. the right hand side of the bound gets tremendously large. This could happen because
some bounds are sensitive to the number of possible classifiers, so when there are multitudinous adjustable
weights (as in neural networks), the right hand side of the bound could be uncontrollably large. On the
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contrary, non-vacuous PAC-Bayes bounds are those that provide additional information. [1]

Therefore, the focus of researchers and scholars in the field is to reach tight non-vacuous PAC-Bayes
bounds. Catoni’s bound and Thieman, Igel, Wintenberger and Seldin’s bound from above are both
non-vacuous bounds. One more example of a famous non-vacuous bound is Tolstikhin and Seldin’s
bound:[34]

For any 6 € (0, 1), with probability at least 1 — &,

p2 p2
B olR(R)] < EpolRu(D, )] +\/ 2 olfa (DINKLQIP ") | 2KL@IP)Hn ")

PART II: APPLYING THE PAC-BAYES BOUNDS TO NEURAL NETWORK

Given the theoretical characterization of PAC-Bayes bound, the researchers started to apply the PAC-
Bayes bound to a wide range of machine learning methods. In particular, [13] studied how PAC-Bayes
bound can be applied to SVM and [5] studied how PAC-Bayes could provide risk certificates for linear
regressions. In our literature review, we will focus on studying Neural Network, which is by far the most
empirically effective yet poorly theoretically understood “black-box” model.

2.1 The Journey of Obtaining Tighter Generalization Bound for Neural Network

In section 2.1, we will focus on the research that provide tighter and tighter generalization bound
on neural network. In Section 2.1.1, we introduce the first attempt of bounding the generalization error
of (shallow) neural network by Langford and Caruana back in 2002. Then, in section 2.1.2, we present
an important work by Dziugaite and Roy in 2017. They achieved non-vacuous generalization error
bounds (around 0.2 on MNIST) by studying the role of stochastic gradient descent in modern massively
overparametrized neural networks. Lastly, we present a recent work by Perez-Ortiz, Rivasplata, Shawe-
Taylor and Szepesvari in 2021 in section 2.1.3. They achieved very tight bound (around 0.02 on MNIST)
by studying the backward propagation algorithm.

2.1.1 The First Attempt of Bounding Generalization Errors of Neural Networks by Langford
and Caruana [18]

This paper builds a construction algorithm based on the PAC-Bayes Relative Entropy Bound by
Langford and Seeger in [19]. To implement the algorithm based on the above bounds, the authors adopt
the traditional method of weight initialization and specify the prior P to a multidimensional gaussian with
a mean of zero and variance in each dimension of b>. The posterior Q is also set to be a multivariate
normal distribution N (w;, ;). It’s calculated by first training a neural network on the examples to get the
w;s and then perform a sensitivity test to search for the largest variance that does not decrease the accuracy
by a certain threshold. Plugging the prior and posterior to the theorem gives us the risk certificate of the
generalization error.

The code experiment on a 100-examples synthetic dataset shows that this algorithm can achieve a
“not completely tight but not vacuous” generalization bound. (The error is bounded by about 60%.) The
authors also make a very remarkable observation that is further discussed in the following papers: the
stochastic neural network can achieve much tighter (on the order of 2) generalization bound. This leads to

9%

the discussion of “flat minima”, “entropy-SGD”, “implicit regularization of SGD”, etc.
2.1.2 Non-vacuous Generalization Error for Neural Networks by Dziugaite and Roy [10]

Extending the work by Langford and Caruana, Dziugaite and Roy studied stochastic gradient descent
(SGD) in greater depth and achieved non-vacuous generalization error (around 0.2 on MNIST).

We first, as the authors did, diverge from PAC-Bayes and make some thought-provoking observations
about SGD and generalization. In the famous paper “Understanding Deep Learning Requires Rethinking
Generalization”, Zhang et al. showed that modern highly overparametrized neural network optimized
with SGD 1) can achieve near-zero training error even if the labels are random coin flips 2) can achieve
near-zero training error and still generalize. These two experiments showed that although the modern
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deep neural network has the capacity to overfit the data, it learns the pattern of the data rather than simply
remembering it.

Some researchers conjecture that SGD performs some form of “implicit regularization” that forces
the neural network to learn the structure of data. For example, Chaudhari et al. believe well-generalizable
solutions lay in large flat regions of the energy landscape while poorly-generalizable parameters are
located in the sharp valleys [7]. The intuition is that weights in sharp minima need to be highly precise to
avoid overfitting while flat minimum does not require that level of precision. They claim that “without
being explicitly tailored to do so”, SGD implicitly optimizes for the flat regions as the SGD stops when
the loss of several epochs of randomly selected mini-batches converges. Other works along this line of
research include [3] [14] [15].

The hypothesis of “flat-minima” leads Dziugaite and Roy to believe that PAC-Bayes theorem could
provide nonvacuous bound if the volume of “flat-minima” is large and not too far from the prior (which
leads to small KL divergence in the PAC-Bayes relative Entropy Bound). They also mentioned that in
modern overparameterized networks, each parameter has negligible effect on the training error and thus
cannot effectively calculate the relative sensitivity as purposed in Langford and Caruana’s algorithm.
Instead, they use stochastic gradient descent to optimize the objective function: the sum of empirical
loss plus the PAC-Bayes generalization error as a regularizer. The prior N (wg, 6>I) the authors choose is
data-dependent while they did not optimize wy and just choose it randomly.

Their coding experiment on MNIST handwritten digits dataset shows that their purposed algorithm
based on PAC-Bayes bound could bound the error rate by around 0.16 to 0.22 with probability 0.965. (They
label digits 0 to 4 as 0 and digits 5 to 9 as 1 to transform the problem to a binary classification problem.)
This is the first work known to us that could obtain nonvacuous (though still loose) generalization error
bound for modern overparametrized neural networks.

2.1.3 Tighter Risk Certificates for Neural Networks by Perez-Ortiz et al. [26]

Mainly based on the papers discussed in section 2.1.1 and 2.1.2, Perez-Ortiz et al. exploit the
back propagation of neural network and achieved even tighter generalization error (0.02 on MNIST)
that can lead to self-certified learning. Under their “PAC-Bayes with Backprop” (PBB) framework,
Perez-Ortiz et al. conducted thorough experiments with multiple different training objectives, prior
distributions, optimizers, and training techniques including dropout and sample-splitting to find tighter
PAC-Bayes bound. They also extend the network architecture from fully connected neural network (FCN)
to Convolution neural network (CNN).

Building on the work of Dziugaite and Roy, which uses the classical PAC-Bayes relative entropy
bound, Perez-Ortiz et al. used two other tighter PAC-Bayes bound as the training objectives: the PAC-
Bayes-lambda bound from [33] and PAC-Bayes-quadratic bound from [27]. In addition to the Gaussian
distribution to be considered by the the previous two papers as the prior and the posterior, Perez-Ortiz
et al. adds the Laplacian distribution and considers both data-free and data-dependent priors. They also
argue that the optimizer stochastic gradient Langevin dynamics (SGLD) that Dziugaite and Roy uses is
not as good as they claim, so they used the standard vanilla SGD with momentum.

Their coding experiment achieved very tight risk certificate on MNIST and nonvacuous bound on
CIFAR10. In particular, they achieved 1% test error and 1.5% risk certificate on MNIST with 2-layer
CNN. By using 15-layer large CNN on CIFARI10, which is a more complex dataset, they achieved 14.6%
test error and 18% risk certificate. These figures are tremendous improvement from previous works and
show that self-certified learning may be possible.

2.2 PAC-Bayes Bounds and Neural Network Architecture

In section 2.2, we examine the application of PAC-Bayesian analysis to some specific types of
neural networks: finite-width neural networks and neural networks with a binary activation function.
In both papers, non-vacuous PAC-Bayes bounds were achieved for these variations of neural network
architectures.

2.2.1 Transportation Map Estimation for Finite-Width Neural Networks by Suzuki [32]
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Recently in 2020, in his research “Generalization Bound of Globally Optimal Non-Convex Neural
Network Training: Transportation Map Estimation by Finite Dimensional Langevin Dynamics”, Taiji
Suzuki proposed to use transportation map estimation for finite-width neural network optimization. [32]
The use of transportation map for neural networks was a novel idea, and the research obtained ground-
breaking results of optimizing infinite and finite width neural networks and bounding their generalization
gap and excess risk through the same process unifyingly.

Suzuki first discussed two conventional methods for optimization: the mean field theory and neural
tangent kernel. Both mean field analysis and neural tangent kernel guarantee convergence to the global
optimal. Mean field analysis has been practiced in biology and physics since decades ago [31], but recent
convergence analysis began with a one-layer neural network by Sirignano in 2019. [30] The mean field
theory deals with non-convexity of neural networks through analyzing neural network training as gradient
flows, and requires taking limits of the number of nodes to infinity, as Sirignano put it, “a law of large
numbers for neural networks.” [30] Similarly, neural tangent kernels ensure convergence to O training loss
with SGD, but the linearization of neural network also requires infinite width, and does not take advantage
of the superiority of non-convex neural networks over linear methods. [12]

Therefore, Suzuki formulated transportation map estimation so that infinite-dimensional Langevin
dynamics could be applied to finite-dimensional neural networks. Transportation map is a map from the
particle’s solution at time O to its solution at time 7. The mapping is wy — W (¢, wy), where W denotes
the stochastic process, wo = W (0) is the particle’s location at time 0. Therefore, Suzuki transformed the
optimization of neural network weights in to the optimization of transportation maps with W(0) as an
identity map. This induces convergence to a global optimal.

Optimization is achieved through minimizing the regularized empirical error R,(D,h) + %HW\ iﬁ’K’
where A is a parameter of choice and .7k denotes a reproducing kernel Hilbert Space that Suzuki defined.
Applying Langevin dynamics and an implicit Euler scheme that Suzuki defined in the infinite-dimensional
RKHS, convergence is proven under a few assumptions that control the strength of the regularization
term and the smoothness. Suzuki concluded that the generalization gap bound (corresponding to our
PAC-Bayes bounds) is given as follows:

For any 8 € (0, 1), if the loss function is bounded by /(X,Y, k) € [a,b] with probability at least 1 — &,

(
Ei2[R(D)] < By alRa(D, 1) + L5221+ 2) I3 )] + 26

Here ek denotes the optimization error, and 3 is a positive inverse temperature parameter. This shows
that the generalization is dependent on both O(ﬁ) and €g. Suzuki also bounded the excess risk (the
difference between the expected risk of the output hypothesis and the expected risk of the best possible
hypothesis) and demonstrates its fast learning rate.

2.2.2 A PAC-Bayesian Analysis of Binary Activated Deep Neural Networks by Letarte et al.
[20]

Letarte et al. provided another application of PAC-Bayes Bounds to a specific neural network
architecture: binary activated deep neural networks. Binary activation functions activate inputs above a
certain value and deactivate inputs below that threshold, and for sign activation that the research concerns,
the threshold is 0. Letarte et al. defines deep NN with a sign activation function as BAM networks (binary
activation multilayer networks). The research discovers that such BAM networks obtain non-vacuous
PAC-Bayes bounds with PBGNet when input instances are independent and identically distributed. [20]

In Letarte et al.’s experiment setting, there are L fully connected layers, the activation function is
binary, and the classification problem predicts a label in {—1, 1}. Their approach to BAM networks was
built on Germain et al.’s application of PAC-Bayesian analysis to linear classifiers, where both prior and
posterior of the weights are Gaussian. [11] Likewise, Letarte et al. assumed a Gaussian posterior, and
minimized the generalization error through SGD.

By aggregating predictors, Letarte et al. brought the non-differentiability of binary functions under
control. In this way the algorithm corresponds to a majority vote algorithm. For multiple number of
layers, Letarte et al. proposed using a computation tree transformed from the BAM network. This
leads to a deterministic output of the model. For training, Letarte et al. again built on Germain et al.’s
PBGD (PAC-Bayesian Gradient Descent) algorithm. [11] The algorithm that Letarte et al. developed was

9/16



PBGNet (PAC-Bayesian Binary Gradient Network). The PAC-Bayes bound that Letarte et al. achieved is
as follows:
For any 6 € (0, 1), with probability at least 1 — §,

Ep~2[R(h)] < lCnJ;{ e (1= exp(—CEj4[Ru(D, )] = L[KL(#|| ) + In2§"]))}
>
In actual training, Letarte et al. explored both the MLP algorithm and four variants of the PBGNet
algorithm. The number of hidden layers was {1,2,3}, and hidden size was picked from {10,50,100}.
Six datasets were included: ads, adult, MNIST17, MNIST49, MNIST56, and MNISTLH. The experiment
confirmed that the variants of the PBGNet algorithm achieved non-vacuous PAC-Bayes bounds.

2.3 application of PAC-Bayes Theory in Meta Learning

Given the basic structure of PAC-Bayesian framework, the researchers began to apply those frame-
works into the real world. One of the most noticeable would be to provide the generalization bound for
the meta learning. In section 2.3.1, we focus on the attempts brought by A. Pentina and C. Lambert
who attempted to apply PAC-bayes bounds to lifelong learning, the prephase of meta learning. Then,
in 2.3.2, we cover R. Amit and R. Meir’s paper who took a step further to derive a tighter bounds that
extends a single task PAC-bayes bound to meta learning setup. Further, in 2.3.3, we introduce the work
proposed by S. T. Jose, G. Durisi who generalize prior works on transfer learning and quantify the impact
of the meta-environment shift. Finally, in 2.3.4, we introduce how PAC-bayes bounds can be extended to
data-dependent prior.

Note that in order to properly cover the content, which has a slightly different setting than the
previous part, we adopt a different set of notations for posteriors and priors, as well as for generalization
and sample error.

2.3.1 A PAC-Bayesian Bound for Lifelong Learning[25]

The first attempt of providing the generalization bound for the meta learning was done by A. Pentina
and C. Lambert for life learning (prephase of meta learning). Recall that in lifelong learning, the objective
was to learn the future scenario based on the past experiences and to do well in future, unobserved data.
In this paper, it proposed PAC Bayesian generalization bound for lifelong learning that allows quantifying
the relation between the expected loss on a future learning task to the average loss on the observed tasks.

It turned out that these bounds offer “unified view on existing paradigms for transfer learning.” Also,
these bounds can be used to derive two principled algorithms.

The paper explored the PAC Bayes bound under two assumptions: 1. the solution vector has a general
form in that a single parameter vector plus a small-specific perturbation (parameter transfer); 2. the
solutions can differ significantly but they all lie in the common subspace of low dimension (representation
transfer).

According to Theorem 1:

KL(Q||P)+log L+ +logm+2
Ep-0lR(h)] < B olRa(D.h)] + \/ R y e
where w), are the weights of the observed tasks so that we are to minimize w),- and R is the risk of a
hypothesis over a datasets.
This has a closed form solution:

1 : _ 2 Vnm+1 2 1 n L
Ywo 7(;,5,)(xE,y)~D,mm{(y (Aiwo +b;,x)) al} < 2onvin [wal”+ 2m/ﬁ2i=1 ll(Ai —14)

Wg—l—biz—l—%zn 1 Zmi (yij_ <A5WQ+b[,xij>)2+ const.

i=1 m; j=1

For the second assumption that all of the solution vectors lies in low dimensional subspace. In
this case, we will try to minimize
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wo = argmin (|w|+ X2, (v — (w.BTx))°)
w

where B is the matrix representing the subspace, such that B > x is the projected representation of the
training data in this subspace.

For P, we choose gaussian with zero mean and variance ¢/ and for Q, we choose shifted gaussian
with variance 61 and mean wy. in this case, we will have KL(Q;(S;, P)||P) = 1/20||w;(B)||. In combina-
tion, we will get

~

er(M) < (M) + 55 =Ty £ Iwi(B)|>+ const = Lyn| BEg{er(wi(B)) - ||wi(B)||2},
D0 -

—1
wi(B) = € (1k+ m%BTXiXiTB> BTXY,

where M is the objective function for learning.

In this case, their main result is a generalization bound in PAC-Bayesian framework. On the one
hand, those bounds can be applied to recover two cases of transfer learning: the transfer of classifier
parameters and the transfer of subspace. On the other hand, it helps to derive principled algorithm for
lifelong learning that achieve results with manually designed methods.

Furthermore, it can be applied to study the implicit assumptions of possible learning methods. One
of the future directions would be, instead of the condition of the tasks are i.i.d, we could relax it to be other
specialized conditions. For instance, the direction of learning tasks of continuously improving difficulty.

2.3.2 Meta-Learning by Adjusting Priors Based on Extended PAC-Bayes Theory[2]

Following on the step of [25], Ron Amit and Ron Meir, in [2], developed a gradient-based algorithm
which minimizes an objective function derived from the bounds and demonstrate its effectiveness numeri-
cally with deep neural networks. In this case, they can derive a tighter bound that extends a single task
PAC-Bayes bounds to meta learning setup.

For a single task problem, let expected error be er(h,D) = E,.pl(h,z) and the empirical error be
ér(h,S) =1/my " 1(h,z).

According to McAllester’s single task bound, we have

KL(Q||P)+log 2
EhNQ[R(h)] < ]Eh~Q[Rn (D’hﬂ + %

According to Pentina & Lambert(2014), a meta learning formation is off the form S1,5,,...S,
corresponding to n different tasks. The goal of the meta learner is to extract information from the previous
tasks and make a prediction on the new task.

To transfer the PAC-Bayes formula to the meta learning case, P would become a “hyper prior” &
and Q will become “hyper posterior” 2. When encountering a new task, the learner samples a prior from
the hyper posterior Q(P).

Therefore, the transfer error would be:

er(Q,r) = Epger(P,r)

and the empirical multi-task error would be:

er(2,81,..,8,) = E ST ér(0(SiiP),S))

Combined with the above, the meta learning PAC-Bayes Bound would be:

2nm;

. D(2||2)+ E_D(Qi]|P)+log =5 D(2||2)+log 2
er(2,1) < %Z?:lPLEgeri(QhSi) i \/ ST + e
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O(S;, P) is the hyper posterior resulting from hyper-prior P and dataset S;, D(Q||P) is the KL divergence
between P and Q.

This formula provided a tighter bound since they applied a single-task PAC-Bayes theorem to bound
the expected error in each task separately, so that this formula takes into account of the number of sample
in the observed task. In this case, they have attested rigorous performance bounds and demonstrated
tighter bounds.

2.3.3 Transfer Meta-Learning: Information-Theoretic[16]

Then, in 2020, S. T. Jose, O. Simeone, G. Durisi proposed novel PAC-Bayesian bounds that generalize
prior works on transfer learning and quantify the impact of the meta-environment shift through the log-
likelihood ratio of the source and target task distributions. Through these bounds, they introduced a novel
meta-learning algorithm, termed IMRM.

To start, the empirical weighted average of per-task test loss of meta-learning set was defined as:

Lo (| 20 Tiw) = B XN L (| 2V ) + s XY gy L (| 29,5

For some hyper parameter ¢, 3 € [0, 1], where T1.y denote N different tasks, ZZIVIIN denote N different
tasks, Lo (u||ZM, T;) is defined as:

Lg(”HT»ZM> Ep WiZM ulLg(W||T)]
Therefore, the transfer meta-generalization gap can be defined as:

Ep,, w (AL (U ZM)] =

PU‘ZIIV:IN [(Zg() Z,g(U|ZjleleN)) (D%g(U|ZleTl:N)_$(U|Z?;4N))]

For any a, B in [0, 1] and o is the variance of posterior, Py zM, is the hyper prior given the previous

Zfl":’N tasks and datasets, U indicates any hyper parameters.
Then, they applied this PAC-Bayes meta generalization gap to invent a new algorithm called IMRM.
Denote as the meta-training loss regularized by the average KL divergence. The IMRM meta-learner
is then defined as any algorithm that solves the optimization problem, with probability 1 - 87, M is the
number of samples:

51, 10 1 28] < o (s +
252
+ I \/MT (D (P, o) +Er, (D (Byyzlloww )] +1og 4BN>
262 -
NZl_ﬁN+l \/Tl (D (PU‘ZZIWN”QU) +EP \ZM |:D (PW‘UZZA/[”QW‘U)} +10g 4(1513)}\]>

where U = argminL,(u||ZMy), for any hyper parameter U and W.
They leveraged the derived PAC-Bayesian bound to propose a new meta-learning algorithm for
transfer meta-learning.

) (Z 108 ; +D (Pu\zfl‘{NHQU) +log%>

2.3.4 PAC-Bayes bounds for with data-dependent prior[21]

Following on this trace, Tianyu Liu, Jie Lu and Guangquan Zhang developed three noval generaliza-
tion error bounds for meta-learning based on PAC-Bayes relative entropy bound. Also, PAC-Bayes boudn
for meta-learning with data-dependent prior, using the empirical risk minimization method.

First, for the classical bayes bound:

For the three novel bound that they proposed, they are meta-learning PAC-Bayes A bound:
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4n, /m;
D(2||2)+ E_D(Q||P)+log ™
er(2,7)<1yr, P2

W Q (QS)"F”Z
+\/z57 (D(2]2) +10e %)

For any A in [0, 1], T appears in the classical bayes bound, er are the expected error, while ér is the
empirical error.
Meta-Learning PAC-Bayes quadratic bound:

er(2,7) < %):;’:1 < ]E er(Q S)+8,+\/§,) —|—\/ =y o@||<@)_|_10g2n)

where & = mi, and meta-learning PAC-Bayes variational bound:

er(2,7) < 3 Xiy B 07(0.S) +; L1y min (ei+ ¢ & (si +2P1Egér<Q,Si)) : ﬁ)

+\/ 1) QH@)Jrlog )

for any 6 € (0,1], A € (0,2] and m; is number of sample.

For the PAC-Bayes bound theory, the generalization error upper bound depends mainly on the
regularization item involving the distance between prior distribution P and posterior distribution Q.
However, the prior distribution is chosen randomly, with a view to measuring the parameter space. In
order to solve this issue, they proposed an ERM approach on part of the training samples.

In practise, one can train probability neural network by minimizing the generalization error upper
bound. That is, during the training process, the learner aimed to minimize the PAC-bayes generalization
error bound.

The above are the three bounds derived from the PAC-Bayes relative entropy bound. First, it was the
meta-learning PAC-Bayes A bound and meta-learning quandratic bounds and meta-learning PAC-Bayes
variational bounds. Next, in order for a better convergence ability, meta-learning PAC-Bayes bounds with
data-dependent prior are also introduced.

For future work, more different prior distributions can be done and other ways to optimize KL can
be done.

PART lll: SIMULATION FOR PAC-BAYES BACKPROP

During this section, we proposed to replace the datasets applied by the paper “Tighter Risk Certificates
for Neural Networks.” That is, in order test whether those datasets working in more general level, we
replaced MNIST to fashion-MNIST, a larger and more complex dataset about clothes. [37] fashion-
MNIST contain fashion images from 10 fashion categories, compared to 10 numbers from MNIST. In that
case, by running this dataset, we can examine how the generalization error bound in the PBB algorithm
could generalize to other datasets.

3.1 Experiment Setup

We set the kl-penalty = 0.1, learning-rate 6 = 0.001, Monte Carlo model samples m=150.000 as the
oringinal paper. Then, we ran the experiment for fy,ad, flambda, felassic> three different objective functions.

3.2 Metric Reported
We applied the same trick proposed in the paper that compress the fashion mnist datasets into 0-1
label. In our experiment, we reported both “learnt” and “random” prior of the new datasets. We reported

Kullback-Leibler penalty (KL-penalty), O-1 loss, risk certificate (risk-CE), risk for 0-1 loss (risk-01).
Also, we reported for 0-1 loss and cross entropy for the stochastic predictor.
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3.3 Architecture

Our experiment composed of a fully convolutional Neural Network composed of 9 layers, 6 CNN
layers plus 3 fully connected linear layers. Between the layer, we applied ReLU as the activation function,
PNN that composed of 2 probability convolutional networks and 2 probability linear layers. For all of
those layers, we ran 10 epochs.We trained fashion-MNIST datasets with train-test split of 6:1. (60000
samples as our training datasets and 10000 samples for testing).

3.4 Experimental Results

Below are the results from our experiments:

Random fully connected neural network
Objectivg I*¢ /01 Lye [ LY Stc x-e | Stc 01
Siampda | 0.03125| 0.11265| 0.34310| 0.06329| 0.28080| 0.00220
Setassic | 0.01067| 0.15997| 0.52280| 0.09413| 0.36350| 0.00326
frBB 0.14315] 0.07206| 0.20850| 0.04465| 0.18600| 0.00143
Squad 0.03000| 0.14650| 0.47250| 0.08529| 0.34370| 0.00297

Learnt fully connected neural network

Objective I** I L | LY Stc x-e | Stc 01
Siampda | 0.00101| 0.05643 | 0.17533| 0.03958| 0.14950| 0.03366
Selassic | 0.00002| 0.06073 | 0.04218| 0.15290| 0.03668| 0.13920
frBB 0.01372] 0.05175| 0.03579| 0.14270| 0.03032| 0.13270
Squaa 0.00007 | 0.05974| 0.04134| 0.15220| 0.03601| 0.13900

Random convolutional neural network
Objective [*~¢ 10T Lge LY Stc x-e | Stc 01
Srambda | 0.02637| 0.10882| 0.08104| 0.32400| 0.06251| 0.26750
Setassic | 0.00863| 0.15440| 0.12291| 0.50860| 0.09306| 0.37020
fpBB 0.12404 | 0.06590| 0.04491| 0.18110| 0.03803| 0.15260
Saquad 0.01206| 0.13945| 0.10946| 0.44670| 0.08101| 0.33110

Learnt convolutional neural network
Objectivg I*—¢ [0 Ly e LY Stc x-e | Stc 01
Siampda | 0.00092| 0.04728 | 0.03024| 0.11730| 0.01987| 0.10500
Setassic | 0.00002| 0.05205| 0.03357| 0.12060| 0.02776| 0.11040
frBB 0.01372] 0.05175| 0.03579| 0.14270| 0.03032| 0.13270
Sauad 0.00010| 0.05052| 0.03225| 0.11920| 0.02592| 0.10880
L*~¢ is cross entropy training loss, L°! is the 01 error, I*~¢ is the cross entropy risk certificate and /! is
the 0-1 risk certificate.

3.5 Discussion and Conclusion

After making a careful comparison between our results and that of the original paper, we made
following conclusion: 1) the improvements brought by PBB are the best among these four objectives
in this datasets, which is consistent with the result brought by the paper. Therefore, among these four
objectives, PBB works the best and achieved the greatest improvements. 2) the risk certificate of both
0-1 loss and cross entropy loss are achieved by f,ssics» Which shows an inconsistency with that shown in
the original paper. To my guess, objective f,4ssics can be more generalized with random data than fppp
3) The best training cross entropy loss was achieved by PBB, which is consistent with the results given
by the original paper, but there has been a large gap between fashion-MNIST and MNIST, the primary
reason would be fashion-MNIST are more complicated and it is more understandable that the error or
loss of Fashion-MNIST datasets will be greater; 4) for 0-1 error, PBB would still lead the way, and it was
consistent with the result for x-e loss; 5) for testing error presented by stochastic loss, it further shows
that PBB achieved the top in these experiments, which adds to the credibility of the results of the original
paper since the results can be generalized.

In conclusion, we explored how to PAC-Bayes backdrop optimization to train the Convolutional
Neural Network and Probability Neuron Network. One of the take-home message is that we have seen
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PBB the greatest improvement among these four objectives in a more generalized dataset than MNIST—-
Fashion-MNIST that consists of image data closer to real life. This is a one step further from the original
paper that we successfully showed the conclusion from the paper can be generalized, which further adds
to the credibility of the paper’s conclusion.
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